The Chase: A Secure Distributed Application
CS2SNS: Secure Network Services

George Hotten (XXXXXX352) & lIzak Fourie (XXXXXX582)

December 23, 2024

Word Count: 1,410

CS2SNS: The Chase: A Secure Distributed Application G. Hotten & I. Fourie

Contents

1 University Declaration

2 Theme and Design
2.1 Architecture,

3 Implementation
3.1 Message Types.
3.2 ServerSetup
33 ClientSetup
34 Gamelogic

4 Application Security

5 WireGuard Analysis
5.1 Analysis without Encryption
5.1.1 Chase Communication System
5.2 Analysis with Encryption oL

6 Other Potential Security Features

7 References

17
17
17
20

21

22

CS2SNS: The Chase: A Secure Distributed Application G. Hotten & I. Fourie

1 University Declaration

We declare that we have personally prepared this assignment. The work is our own,
carried out personally by us unless otherwise stated and has not been generated using
paid for assessment writing services or Artificial Intelligence tools unless specified as a
clearly stated approved component of the assessment brief. All sources of information,
including quotations, are acknowledged by means of the appropriate citations and
references. We declare that this work has not gained credit previously for another
module at this or another University, save for permitted elements which formed part
of an associated proposal linked directly to this submission.

We understand that plagiarism, collusion, copying another student and commissioning
(which for the avoidance of doubt includes the use of essay mills and other paid
for assessment writing services, as well as unattributed use of work generated by
Artificial Intelligence tools) are regarded as offences against the University's Assessment
Regulations and may result in formal disciplinary proceedings.

We understand that by submitting this assessment, We declare ourselves fit to be able
to undertake the assessment and accept the outcome of the assessment as valid.

All members of the team contributed to all elements of this report.

CS2SNS: The Chase: A Secure Distributed Application G. Hotten & I. Fourie

2 Theme and Design

We initially discussed how we would go about making our project, we agreed on using
Java for this. Our project is based on the British television show ‘The Chase’ that
first aired back in 2009. The premise of the show is a player goes head-to-head with a
chaser, answering multiple choice questions for a chance to win money. To make the
game more entertaining and fair, we created the game to be two-players. This removes
accusations of the server being biased when giving answers and also allows for friends
to compete head to head.

2.1 Architecture

The application uses a key-value-based approach for communication. When sending
data, the sender will first send an integer which all parties know the meaning of.
Following from the integer, the sender will supply data relevant to the integer. For
example, integer 4 is used when a player is sending an answer to the server. After
integer 4 is sent, the sender will supply A, B, or C to indicate their answer.

The following diagram shows how the server and the client communicate with each-other:

TCP TCP TCP
1st

Connection 2nd
> Connection

ASSigned "Chaser to client 1as Its |
the 1st connection to the server. | Assigned "Player” to client 2 as If's
the 2nd connection to the server.

- >
Questions, timer and results. Questions, timer and results.
Answer Answer
> | <
- > - »
Send integers to tell receiver what | Send integers to tell receiver what
the message is about. the message is about.

Client 1 Server Client 2
“Chaser” “Player”

CS2SNS: The Chase: A Secure Distributed Application G. Hotten & I. Fourie

In this diagram, the client connects to the server using Transmission Control Protocol
(TCP). When the first client is connected, they will receive a role based on a "first
come, first served” system. The first client will be the chaser, and the second client
will be the player. From here, the game will start and data will be sent to the clients
containing questions and the possible answers. They submit their answers against a
timer and are given back the results.

3 Implementation

Our architecture is the core of our application. Using the before mentioned integer
system, these are the different types of messages that can be sent:

3.1 Message Types

~ to the client

ql
the question

music

yving the timer music

STION_STOP
ULTS_PLAYER(18) o}
RESULTS_CORRECT(11), // Plays
RESULTS CHASER(12)Y, '/ Plays
DISCONNECT(13), '/ Disconnects the client from
ROLE_DESIGNATION{14}, // Lets the client know
PLAYER '/ End the

Figure 1: MessageType.java

Each message has a clear comment describing its purpose and when it should be
used.

CS2SNS: The Chase: A Secure Distributed Application G. Hotten & I. Fourie

public static woid se

try {

e.printStackTrace();

public static woid sendToPlay
try {
playerstream.writeInt(typ
playerStream.writeUTF(mes

playerstream.flushi);

1 catch (IOException e) {

e.printStackTrace();

sendToPlayer(type, message);

Figure 2: Server.java

To send data to the clients (and for sending data back to the server), the above is
used. The message type integer is written to the stream, alongside any string data
required for that message type. This data is then "flushed”, meaning it is sent to the
receiver.

CS2SNS: The Chase: A Secure Distributed Application G. Hotten & I. Fourie

3.2 Server Setup

tFacto

Figure 3: Server.java

To start, an SSL socket server is created using the systems key/trust store and a
specified password. The application uses TLS v1.2 and v1.3. When a client is securely
connected via TLS, the server sends a "ROLE DESIGNATION" message to the client
informing them of their role, alongside a welcome message. The server then creates a
"server data receive thread” which listens for messages from the client(s) and performs
actions based on the data.

CS2SNS: The Chase: A Secure Distributed Application G. Hotten & I. Fourie

rride

public woid run() {

DatalnputStream stream;
try |
tream = new DatalnputStreamisocke tInputstream());
boolean run = true;
while (run) {
int typeld =
String data
Optional<Me

Hils.print("Rece

return;

Figure 4: ServerDataReceiveThread.java

While the client is connected, it awaits the message integer and the associated data to
be received. It then checks to ensure that the integer received was a valid type. Based
on the integer received, it will perform the appropriate action.

3.3 Client Setup

try {

Utils.print("Loading client an

dataQutputStream = n
tils.print("Connec

Utils.print("Type 'Commands' for additional functionality or help.

Figure 5: Client.java

For the client to connect, it will load the same key/trust store data with the specified
password to create a secure SSL socket connection to the server. Once connected, the
client will start a "client data receive thread” which listens for messages from the server
and performs action based on the data.

CS2SNS: The Chase: A Secure Distributed Application G. Hotten & I. Fourie

rerride

public woid run(} {

DatalnputStream stream;
try {
tream = new DatalnputStream(socket.getInputstream());
while (Client.running) {
int typeld = stream.readInt();
String data = stream.readUTF();

Optional<M

Utils.print(

return;

Figure 6: ClientDataReceiveThread.java

Similar to the server's data receive thread, it awaits messages from the servers and
validates the received integers. Based on the integer received, it will perform the
appropriate action.

3.4 Game Logic

public static woid start(
currentRound g a nd(new QuestionData("Example Question™, “Option A", "Option B", "Option C*, 'b')};

currentRound. s

public wvoid send(

on(guestion));

Figure 7: Server.java and GameRound.java

Now the clients are connected, the server creates a new "game round” and sends the
next question via the "QUESTION SEND" message.

CS2SNS: The Chase: A Secure Distributed Application G. Hotten & I. Fourie

QUESTION_SEND -> {

-

Client.question = gson.fromlson(data, QuestionData.class);

Client.sendToServer(MessageType . .QUESTION_RECEIVE, “™);

Figure 8: ClientDataReceiveThread.java
The client has now received the question. For fairness and ensuring that both clients

have received the question, the client sends back to the server a "QUESTION RECEIVE"
and does not yet display the question.

10

CS2SNS: The Chase: A Secure Distributed Application G. Hotten & I. Fourie

public

f question."};

public d woid pl

playerReady = true;
Utils.print("Pl r has ip f guestion.™);

i_'

public ch ized wvoid p stion(} {
tils = wing gquesti
erve ndTol ype .| STION_START,

Figure 9: ServerDataReceiveThread.java and GameRound.java

When both clients have confirmed receipt of the question, the server sends a "QUESTION
START" message which prompts the clients to display the message.

11

CS2SNS: The Chase: A Secure Distributed Application G. Hotten & I. Fourie

CHASE] Starting server...

CHASE] Awaiting connections.

CHASE] Chaser is connected.

CHASE] Player is connected.

CHASE] Chaser has confirmed receipt of question.
CHASE] Player has confirmed receipt of question.
CHASE] Clients are ready, showing question.

CHASE] Loading client and connecting to server...

CHASE] Connected.

CHASE] Type 'Commands' for additional functionality or help.
CHASE] Welcome. Please wait. You are the player.

CHASE] Example Question

CHASE] A) Option A

CHASE] B) Option B

CHASE] C) Option C

CHASE] Please type your answer and press ENTER.

Figure 10: Server and client’s view when a question is sent

This is the view of the server, which has logs on when players connect, when they
confirm receipt of questions and when they're sent. From the client’s side, they are
informed of their role and are displayed the question when instructed by the server.

a
[CS25NS: THE CHASE] Answer locked in!
[CS2SNS: THE CHASE] The player has 5 seconds to answer.

[CS2SNS: CHASE] The chaser has answered!
[CS2SNS: CHASE] TIME LEFT TO ANSWER: 5s

[CS2SNs: CHASE] TIME LEFT TO ANSWER: Us
[CS2SNS: CHASE] TIME LEFT TO ANSWER: 3s
[CS2SNS: CHASE] TIME LEFT TO ANSWER: 2s
[CS2SNS: CHASE] TIME LEFT TO ANSWER: 1s

c
[CS25NS: CHASE] Answer locked in!

Figure 11: Chaser and player’'s view when the timer starts

When one player answers, the other player has 5 seconds to answer. If they don't
answer in time, they are locked out and will not score points this round.

12

CS2SNS: The Chase: A Secure Distributed Application G. Hotten & I. Fourie

BufferedReader reader new BufferedReader(new InputStreamReader(System.in));

String input = reader.readline()};

} || input.equalsI

ionInput

s.print("Answer locked in!™};

Utils.print({"Please choose either: A, B, or C and press ENTER!™};

continue;

Figure 12: Client.java

This is the logic for a player entering an answer. Their input is checked to ensure it
is either A, B or C. If their input is valid, it is sent to the server with a "PLAYER
ANSWER" message.

endToAll (M ET_';-'I:IE.F'__-'l'."|"'EF:__-"-'.”'_:-.'.EF-:__
.currentRound.ch rAnswer = data.cha
.print{"Chaser has answered " + data);
endToAll (M ag

ver.currentRound.playerfAnswer

IHils.print{"Player has answered

.currentRound.check&ndRunTimer();

Figure 13: ServerDataReceiveThread.java

When the server receives the answer data, it is stored and then the server checks to
see what must happen next.

13

CS2SNS: The Chase: A Secure Distributed Application G. Hotten & I. Fourie

public synchronized woid checkAndRunTimer() {

if (timerRunning) {

&,
43

mwan 'y
.II ¥

timerRunning = true;
erver.sendToAll(MessageType.TIMER_START,

timerRunnable = new TimerRunnablel);

timerRunnable.run();

Figure 14: GameRound.java

If only one player has answered, the server will send the "TIMER START" message to
start the timer music for the clients and start a server-side five-second countdown. If
both players have answered whilst the timer is running, it is stopped and clients are
sent the "TIMER STOP"” and "QUESTION STOP" to stop the timer music and the

question input respectively.

14

CS2SNS: The Chase: A Secure Distributed Application G. Hotten & I. Fourie

[CS2SNS:
[CS2SNS:
[CS2SNS:
[CS2SNS:
[CS2sns:
[CS2SNS:

[CS2SNS:
[CS2sNs:
[CS2SNS:
[CS2SNS:
[CS2SNS:

CHASE] The player has answered!
CHASE] The player put...

CHASE] C) Option C

CHASE] The correct answer is...
CHASE] B) Option B

CHASE] You put...

CHASE] A) Option A

CHASE] The scores are now:
CHASE] Player: ©

CHASE] Chaser: ©

CHASE] Your next question will come in 5 seconds...

Figure 15: Chaser’s view after a question

After all players have answered or timed out, the results screen is show at two second
intervals announcing what each player put and what the correct answer is. If a player
gets the answer correct, they get a point added to their score. Whoever reaches a score
of three first is crowned the winner.

15

CS2SNS: The Chase: A Secure Distributed Application G. Hotten & I. Fourie

4 Application Security

To ensure the best player experience, and to eliminate the risk of hackers cheating at
the game, we have implemented a secure socket layer (SSL) and transport layer security

(TLS).

‘h
S
N Server
~
(Client Hello -
v
et Server Hello)
A
o ———
d == = == == e wm= e=f ScrverCertificate)
o ——
st v oo L} oo
f — —— — — — —] S&_‘r\crl\ey \
N Exchange _
O e e ——
< S Client Certificate)
N — Req _ _
.
- Server Hello Done
-
P ——
| Client Certificate jrm= w— a— a— a— —
N A
(‘_li.cnl Key) >
Exchange y
P o ——— —
| Centificate Verify o c— c— — — — — D
e T T e T T
((‘h.‘mgu: Cipher Spec >
v
~
(Client Finished >
A
v \/

Figure 16: SSL/TLS full/abbreviated handshake protocol (Kim et al., 2015)

This process shows an SSL handshake process which shows how the client and server
communicate and establish a secure, encrypted connection. We then wanted to test if
our packets are encrypted. We decided to use Wireshark to use this. Sandhya et al.
(2017) explains the importance of Wireshark as it is an ethical hacking tool that can
“reveal the flaws in the system security at the user authentication level.” which makes it
perfect for testing our SSL encryption and gain confirmation of the functionality.

16

CS2SNS: The Chase: A Secure Distributed Application G. Hotten & I. Fourie

5 WireGuard Analysis

First, we will review the packets to/from our application without any form of encryption
enabled.

5.1 Analysis without Encryption

No. Time Source Destination Protocol Length Info
1960 7.683083 127.0.0.1 127.0.0.1 TCP 56 46906 =+ 17777 [SYN] Seq=0 Win=65535 Len=0 M55=65495 W5=256 SACK_PERM
1972 7.683282 127.0.0.1 127.0.0.1 TCP 56 17777 =+ 46986 [SYN, ACK] Seq=8 Ack=1 Win=65535 Len=0 M55=65495 WS5=256 SACK_PERM
1e73 7.683320 127.90.0.1 127.0.0.1 TP 44 46996 = 17777 [ACK] Seq=1 Ack=1 Win=65280 Len=0
174 7.685963 127.90.0.1 127.0.0.1 TP 48 17777 = 46986 [P5H, ACK] Seq=1 Ack=1 Win=6528@ Len=4
1e75 7.685979 127.90.0.1 127.0.0.1 TP 44 46996 = 17777 [ACK] Seq=1 Ack=5 Win=65280 Len=0
1876 7.686176 127.0.0.1 127.0.8.1 TP 52 17777 + 46986 [PSH, ACK] Seq=5 Ack=1 Win-6528@ Len=8
1877 7.686187 127.0.0.1 127.0.8.1 TP 44 469096 = 17777 [ACK] Seg=1 Ack=13 Win=65280 Len=@
1878 7.686224 127.0.0.1 127.0.8.1 TP 48 17777 = 46986 [PSH, ACK] Seq=13 Ack=1 Win=65288 Len=4
1879 7.686232 127.0.0.1 127.0.8.1 TP 44 46996 = 17777 [ACK] Seq=1 Ack=17 Win=65280 Len=@
1888 7.686265 127.8.0.1 127.0.0.1 TCP 87 17777 + 46986 [PSH, ACK] Seq=17 Ack=1 Win=65280 Len=43
1881 7.686272 127.8.0.1 127.0.0.1 TCP 44 46986 =+ 17777 [ACK] Seq=1 Ack=68 Win=65280 Len=8

Figure 17: Wireshark view of a client connecting to the server

Here we can see a regular TCP handshake following the SYN, SYN-ACK, and ACK
process on the first three packets. This process synchronizes the two endpoints and
ensures they're both ready to communicate (GeeksforGeeks, 2024).

5.1.1 Chase Communication System

Looking at the next few packets, we can identify a "/ROLE DESIGNATION" message
being sent from the server to the client.

“ Data (4 bytes)
Data: ebee888e

[Length: 4]
@2 @@ @@ @@ 45 @0 @@ 3@ b2 37 40 @0 30 96 @0 PO E--@ -7
7f @@ @@ @1 7f @@ @@ @1 45 71 b7 3a 21 99 d2 16 Eq-:!
2028 d3 8e de 14 58 18 8@ T e4 6 20 o0 [LERE p o

0030 aser
Figure 18: Role Designation packets

On the first packet, we can see the hex number Oe being sent. This corresponds to
fourteen in decimal, which is the same number used for the role designation message.
After this packet, we see the text "chaser” being sent. This aligns with the data sent
with the role designation message, as the server will send either "chaser” or "player” to
inform the client of their role.

17

CS2SNS: The Chase: A Secure Distributed Application

G. Hotten & |. Fourie

After the role is sent, the server sends a "TEXT" message welcoming the client to the
game. This can also be observed with the initial value of zero being sent before the
text. Zero is the integer value associated with the text message.

“ Data [4.E§tes}

Data: eaeeeBe8
[Length: 4]
@2 68 B8 88 45 86 88 53 b2 3b 48 82 58 @5 08 B8
7f 68 88 81 71 @@ 88 81 45 71 b7 3a 21 99 d2 22
d3 8e de 14 58 18 88 ff 4c ce 88 88 [57 BS
; 2 ; &’ 65 77 B lcome. P lease wa
74 65 it. ¥You are the

chaser.

THE CHASE] Connected.
THE CHASE] Type 'Commands' for additional functionality or help.
THE CHASE] Welcome. Please wait. You are the chaser.

Figure 19: Text message packets

When a second player has connected, the server sends out a "QUESTION SEND"
message containing the question to display. This is represented with an integer of one,
followed by the question in a JSON format that the client can encode.

v Data (4 bytes)

2826
2838

2858
2868
287
BEEe
BE9E6
28a

Data: 68688861
[Length: 4]
62 0B 6B BB 45 BB BB ad cc 45 46 6B 30 06 OB 08
7f 8@ @8 81 7T 88 88 81 45 71 b7 3a 21 99 d2 51
a8 . 33 "
7 question ":"Exam
6 le Quest ion"™,™an

"Option

ption B"
c (L] : “ﬂpt
answer c

orrect™:

Figure 20: Question Send packets

18

CS2SNS: The Chase: A Secure Distributed Application G. Hotten & I. Fourie

The client then sends a "QUESTION RECEIVE" packet, represented by a two. When

both clients have sent this message, the server sends a "QUESTION START", represented
by a three. Once this message is received, the clients display the question ready for

answering.

v Data (4 bytes) v~ Data (4 bytes)
Data: boboeBB2 Data: eoe@eea3
[Length: 4] [Length: 4]

Figure 21: Question Receive and Start packets

19

CS2SNS: The Chase: A Secure Distributed Application G. Hotten & I. Fourie

5.2 Analysis with Encryption
With SSL and TLS enabled, our WireShark looks very different.

No. Time Source Destination Protocol Length Info
385 6.875655 127.8.0.1 127.8.8.1 TCP 44 54894 + 17777 [ACK] Seq=1 Ack=1 Win=65238 Len=@
386 6.938125 127.8.8.1 127.6.8.1 TLSv1.3 472 Client Hello
387 6.938166 127.8.0.1 127.6.8.1 TCP 44 17777 + 54894 [ACK] Seq=1 Ack=429 Win=65824 Len=8
388 6.947476 127.8.0.1 127.6.8.1 TLSv1.3 171 Server Hello
389 £.947509 127.0.0.1 127.0.9.1 TCP 44 54894 + 17777 [ACK] Seq=429 Ack=128 Win=65280 Len=0@
398 6.953061 127.8.0.1 127.8.8.1 TLSv1.3 5@ Change Cipher Spec
391 6.953882 127.8.0.1 127.8.8.1 TCP 44 54894 + 17777 [ACK] Seq=429 Ack=134 Win=65280 Len=@
392 6.954918 127.8.8.1 127.6.8.1 TLSv1.3 114 Application Data
393 6.954937 127.8.0.1 127.6.8.1 TCP 44 54894 + 17777 [ACK] Seq=429 Ack=2084 Win=65280 Len=0
394 6.957649 127.8.9.1 127.@.9.1 TLSv1.3 5@ Change Cipher Spec
395 6.957668 127.8.0.1 127.0.9.1 TCP 44 17777 + 54894 [ACK] Seq=284 Ack=435 Win=65024 Len=@
396 6.959242 127.8.0.1 127.8.8.1 TLSv1.3 1188 Application Data
397 6.959264 127.8.8.1 127.6.8.1 TCP 44 54894 + 17777 [ACK] Seq=435 Ack=1268 Win=64256 Len=@
398 6.982218 127.8.0.1 127.6.8.1 TLSv1.3 346 Application Data
399 6.982252 127.8.0.1 127.6.8.1 TCP 44 54894 + 17777 [ACK] Seq=435 Ack=1562 Win=63744 Len=08
488 6.983659 127.0.0.1 127.0.9.1 TLSv1.3 134 Application Data
481 6.983678 127.8.0.1 127.8.8.1 TCP 44 54894 + 17777 [ACK] Seq=435 Ack=1652 Win=63744 Len=0
482 6.98897@ 127.8.0.1 127.8.8.1 TLSv1.3 134 Application Data
483 6.989806 127.8.8.1 127.6.8.1 TCP 44 17777 + 54894 [ACK] Seq=1652 Ack=525 Win=64768 Len=@
484 6.993632 127.8.0.1 127.6.8.1 TLSv1.3 1358 Application Data
485 6.993668 127.8.9.1 127.@.9.1 TCP 44 54894 + 17777 [ACK] 5eq=525 Ack=2966 Win=62464 Len=0
486 6.993799 127.8.0.1 127.0.9.1 TLSv1.3 86 Application Data
487 6.993824 127.8.0.1 127.8.8.1 TCP 44 54894 » 17777 [ACK] Seq=525 Ack=3@88 Win=62464 Len=8
488 6.994835 127.8.8.1 127.6.8.1 TLSv1.3 9@ Application Data
489 6.994846 127.8.0.1 127.6.8.1 TCP 44 54894 + 17777 [ACK] Seq=525 Ack=30854 Win=62464 Len=0
418 6.994138 127.8.0.1 127.6.8.1 TLSv1.3 86 Application Data
411 6.994140 127.0.0.1 127.0.9.1 TCP 44 54894 + 17777 [ACK] 5eq=525 Ack=30896 Win=62208 Len=0
412 6.994228 127.8.0.1 127.8.8.1 TLSv1.3 125 Application Data

= 413 6.994229 127.8.0.1 127.8.8.1 TCP 44 54894 + 17777 [ACK] Seq=525 Ack=3177 Win=62208 Len=0

Figure 22: Wireshark view of a client connecting to the server with TLS

We can still see our TCP handshake, but now we can also see our TLS handshake.
If we look at any of the packets sent, they all contain "Encrypted Application Data”,
making it impossible to read the data being transmitted.

¥ Transport Layer Security
¥ TLSv1.3 Record Layer: Application Data Protocel: Applicaticn Data
Opaque Type: Application Data (23)
Version: TLS 1.2 (@x8383)
Length: 76
Encrypted Application Data: 9e3255@b668ee7cd458979f9e776642942a5c57F3c94bddca38bbe6f794258072a3d055b8..

Figure 23: The data within a packet sent from the server

This adds vital security to our application, ensuring that hackers are unable to intercept
data being sent to/from the server making it impossible to cheat or exploit.

20

CS2SNS: The Chase: A Secure Distributed Application G. Hotten & I. Fourie

6 Other Potential Security Features

In the future, we would implement additional security measures for robust protection
of client-server communications. One of these features would be a passkey. Each
client would be provided with a unique, random string of text issued by the server
upon connection, which must be present and allows the server to verify that the
communication is coming from the verified client. It would also be encrypted using
Transport Layer Security (TLS), which adds protection against eavesdropping such as
sniffing, impersonation, and tampering.

In addition, we would also add dynamic firewalls, as they have an advantage over
traditional ones since they can modify rules in real time depending on authenticated
connections. When the client has successfully connected, the firewall validates the
client’s IP address and only allows for traffic to go in and from there. It ensures that
only authorised users can exchange data with the server, adding an additional layer to
blocking unauthorised access.

21

CS2SNS: The Chase: A Secure Distributed Application G. Hotten & I. Fourie

References

GeeksforGeeks (2024), ‘Tcp 3-way handshake process’. Accessed: 22 December 2024.
URL: https://www.geeksforgeeks.org/tcp-3-way-handshake-process/

Kim, S.-M., Goo, Y.-H., Kim, M.-S., Choi, S.-G. and Choi, M.-J. (2015), A
method for service identification of ssl/tls encrypted traffic with the relation
of session id and server ip, in ‘2015 17th Asia-Pacific Network Operations
and Management Symposium (APNOMS)', pp. 487-490. Available at:
https://ieeexplore.ieee.org/document/7275373.

Sandhya, S., Purkayastha, S., Joshua, E. and Deep, A. (2017), Assessment of website
security by penetration testing using wireshark, in ‘2017 4th International Conference
on Advanced Computing and Communication Systems (ICACCS)’, pp. 1-4. Available
at: https://ieeexplore.ieee.org/document/8014711.

22

